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ABSTRACT

In limited data tomography, with applications such as elec-
tron microscopy and medical imaging, the scanning views
are within an angular range that is often both limited and
sparsely sampled. In these situations, standard algorithms
produce reconstructions with notorious artifacts. We show in
this paper that a sparsity image representation principle, based
on learning dictionaries for sparse representations of image
patches, leads to significantly improved reconstructions of the
unknown density from its limited angle projections. The pre-
sentation of the underlying framework is complemented with
illustrative results on artificial and real data.
Keywords: Limited angle tomography, sparse representations,
regularization

1. INTRODUCTION

Tomography, with applications such as electron microscopy,
medical imaging, and industrial non-destructive testing, refers
to the recovery of the density distribution inside the body from
its given projections. We are primarily interested in the class
of tomography which can be modeled by the Radon trans-
form. In limited data tomography, data are collected over
an angular range that is either limited (due to physical con-
straints) or sparsely sampled (e.g., due to cost savings or ra-
diation limitations). The use of standard reconstruction algo-
rithms, such as filtered back-projection (FBP) methods, pro-
duces reconstructions with notorious artifacts, see Figure 1.
In dealing with the ubiquitous limited angle tomography,

several approaches have been tested (e.g., see [1, 2, 3, 4, 5] for
more recent ones). In terms of artifacts, methods that apply
regularization in the image (density) domain show higher de-
grees of success. Nevertheless, they normally assume piece-
wise smoothness of the unknown image and are still vulnera-
ble to the artifacts, unless a “reference image” is used, which
is not always available.
For the sparse angular sampling problem, total variation

(related) methods have been shown to be very promising,
mainly when applied to piecewise constant images [1, 6, 7].
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Fig. 1. Reconstructions of the phantom in Figure 2 from just
11 noiseless projections extended over 120 degrees. FBP
(left), a total variation based method (center), and the results
by our proposed method (right).

It was shown in [6] that if the unknown signal is sparse in
some given representation (e.g., in some vector space), then
it can be accurately recovered, with high probability, from
only a few (random) measurements. An example is the exact
recovery of a piecewise constant image like the Shepp-Logan
Phantom (which has only a few non-zero gradients) from only
a few projections. In practice, images in real applications are
seldom piecewise constant, and therefore finding an efficient
representation “basis” in which the unknown image is sparse
remains an open problem. Here we address this issue from a
practical viewpoint, by first considering small image patches.
We show that by assuming sparsity of the patches with respect
to a basis that in turn is being learned (following [8]), we
can reconstruct images that cannot be efficiently recovered by
these TV-based methods, see Figure 1. We should add that the
theoretical results in [6] do not address the important case of
the missing wedge, meaning that not only the data is sparsely
sampled but also a continuous range of projections is missing
(often about 30% of the total range).

2. SPARSITY MODELS IN TOMOGRAPHY

2.1. Sparsity representation of patches

The present work is motivated by the image processing suc-
cess of the Sparseland model for signal recovery problems
[9]. For signals from a class Γ ⊂ R

N , this model suggests the
existence of a specific redundant dictionaryD ∈ R

N×K that
containsK atoms, such that for any signal x ∈ Γ, there exists
a sparse linear combination of atoms from D that approxi-
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mates it well. More formally, this means that ∀x ∈ Γ, ∃α ∈
R

K , such that x ≈ Dα and ‖α‖
0
� N.

D can be predefined (such as wavelets) or learned (e.g., by
the K-SVD algorithm [8]), as in this work. Due to its highly
effectiveness for tasks such as image denoising, demosaicing,
and inpainting, in particular when the dictionary is learned [9,
10], here we extend this idea to tomographic reconstruction.
To make this framework practical, the Sparseland model,

like many other image-domain regularization methods, con-
siders the processing of small overlapping image patches, i.e.,
such patches are the ones that admit a sparse representation.
Assume that the patches are of size

√
n×√

n (i.e., n pixels in
each patch), then the idea is that a patchMx can be approxi-
mated byDα, whereM is a n×N binary matrix that extracts
the patch from the image x, D ∈ R

n×K is the learned dictio-
nary, and α ∈ R

K×J , with J being the number of patches.
The goal then is to learn D such that α is sparse and x is ef-
ficiently and accurately reconstructed by the joint sparse rep-
resentation of all its corresponding overlapping patches. We
now briefly present the framework while revisiting the appli-
cation of this model to image denoising.

2.2. Image denoising model

In [9], the authors considered the classical model for image
degradation, y = x + w, where x ∈ R

N is the clean image,
w ∈ R

N is assumed to be white Gaussian noise with a fixed
standard deviation σ (the case of non-uniform σ is dealt with
in [10]), and y ∈ R

N is the noisy observed image. The energy
minimization formulation corresponding to the simultaneous
learning ofD, computation of α, and restoration of x, is

{
α̂, D̂, x̂

}
= arg min

α,D,x

⎧⎨
⎩λ ‖x − y‖2

2
+

J∑
j=1

μj ‖αj‖0
+

J∑
j=1

‖Dαj − Mjx‖2

2

⎫⎬
⎭ , (1)

whereλ and the μj (j = 1, ..., J) are positive, and the columns
of α ∈ R

K×J are the coefficient vectors αj (j = 1, ..., J), in
a way that the j-th patchMjx is approximated by Dαj . The
vector x̂ ∈ R

N is an estimate of the true image. The first term
in (1) enforces the matching to the data. The second and the
last terms provide regularization, considering that the solution
has a sparse representation for every overlapping patch over
the learned dictionary D̂. Details on the optimization of this
variational formulation are presented below.

2.3. Image reconstruction model: The tomography case

For reconstruction in limited angle tomography,we model the
measurement y ∈ R

I as y = Rx+w, whereR ∈ R
I×N is the

(discrete) Radon transform (I projections), and w ∈ R
I is the

noise, which causes (in general non-uniform) uncertainties in

the pixel (or voxel, if in 3D) intensities of the reconstructed
image. If the reconstruction process is linear, these uncertain-
ties can be estimated (see, e.g., [11]). This however is not
the case, if we attempt to use the regularization in (1), due
to the non-linearity introduced by the operation ‖·‖

0
, which

affects the (non-deterministic) α. Nevertheless, assuming a
deterministic α and uniform noise, we can restore linearity
and compute a first order approximation to these uncertain-
ties. It turns out that the largest uncertainties occur mainly at
the boundaries within the first few pixels, whereas in the in-
terior they are relatively uniform. As a result, we propose to
solve the tomographic reconstruction problem via

{
α̂, D̂, x̂

}
= arg min

α,D,x

⎧⎨
⎩λ ‖Rx − y‖2

2
+

J∑
j=1

μj ‖αj‖0
+

J∑
j=1

‖Dαj − Mjx‖2

2

⎫⎬
⎭ , (2)

subject to the condition of known boundary within a few pix-
els, due to the large uncertainties there. Note that while the
measurements are in the Radon domain (first term in (2)), the
imposed sparsity and learned dictionary are in the image (den-
sity) domain.

2.4. Optimization algorithm

The proposed algorithm follows [8], and consists of steps of
the K-SVD algorithm (downloaded fromwww.cs.technion.ac.
il/~elad/) for image denoising, alternated with a Radon inver-
sion algorithm. Let d1, ..., dK be the columns of D, which
are the atoms in the dictionary. Let αk∈ R

J denote the k-
th row of α. The K-SVD algorithm for denoising of gray
scale images essentially minimizes the objective function in
(1) with respect to the “coordinates” αj(j = 1, ..., J), dk(k =
1, ..., K), αk(k = 1, ..., K), and x. First (the sparse coding
step), the minimization is carried out with respect to each αj

(j = 1, ..., J) via standard orthogonal matching pursuit (find
the best atoms from the given dictionary), and then (the dic-
tionary update step) the algorithm optimizes the last term of
(1) with respect to dk and αk simultaneously (where only the
nonzero components of αk are considered, improve via SVD
the atom for all the patches that selected it in the sparse cod-
ing step), for each k = 1, ..., K . This process is repeated
a few times, until D and α have been learned. Finally (the
averaging step), the objective function is minimized with re-
spect to x (this is a simple weighted average of the overlap-
ping patches). Here we skip the averaging step, optimizing
(2) with respect to the image x, which is a simple quadratic
optimization solved using Matlab. There is a critical “sparsity
threshold” ε in the KSVD algorithm: higher (lower) ε induces
fewer (more) atoms to approximate a patch in the sparse cod-
ing step. It is determined by the pixel uncertainties that, as
discussed above, in the case of tomography are difficult to
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Fig. 2. 128 × 128 mathematical phantom with a fore-
ground that has a uniform density (left, Phantom A), and
checkerboard-like patterns (right, Phantom B).

compute. Therefore, we set ε as a free parameter. See [10]
for more discussion about this parameter.

3. EXPERIMENTAL RESULTS

In the experiments presented below, we used (see (2)) a La-
grange multiplier λ = 1, size of the patches n = 25, size
of the redundant dictionary K = 64, and known boundary
values up to three pixels thick. The initial dictionary was the
Discrete Cosine Transform.

3.1. Simulated data

We created two mathematical 2D phantoms. Both phantoms
contain four primitives, with constant density in the first one,
called Phantom A, and checkerboard-like patterns in the sec-
ond one, called Phantom B. See Figure 2. The former is bi-
nary with background intensity 0.1 and foreground intensity
1; and the latter has a minimal intensity -1 and maximal in-
tensity 1. On a gray scale, black represents the minimum and
white represents the maximum.
The simulated data sets consisted of 11 projections ex-

tended uniformly over two thirds of the standard (e.g., in elec-
tron tomography) full 180◦ range. Typically, when standard
reconstruction algorithms (such as the FBP) are used, many
more (the order of hundreds) projections extending over the
full angular range are required. We considered both perfect
and noisy projection data. The noise in the measurements
was independent Gaussians with unit standard deviation.
For comparisons, we performed the reconstructions using

a FBP method, a TV-based method (see Appendix), and the
proposed approach. See figures 1 and 3 . Note that, because
of the missing angular range, which is in the horizontal di-
rection, edges along this direction are notoriously difficult to
recover. We used ε = 0.01 and ε = 0.05, respectively, for
the Phantom A and Phantom B. In all cases, the number of
iterations wasH = 1, 000.

These preliminary results suggest that our proposed re-
construction method outperforms both qualitatively (e.g., less
artifacts and more contrast) and quantitatively a FBP method
and a TV-based method. See Table 1, where the estimation
error is defined to be ‖x̂ − x0‖2

, with x̂ and x0, respectively,
the reconstructed and the true image.

Fig. 3. Top row: 128×128 reconstructions of the Phantom
A from 11 noiseless projections. FBP (left), a TV-based al-
gorithm (center), and the results by our proposed method
(right). Bottom row: same order but for the Phantom B and
noisy data. Note that TV-based minimization works well with
Phantom A (piecewise constant) but not with Phantom B.

Table 1. Estimation error .
Technique A/B (noiseless) A/B (noisy)
FBP 20/28 18.6/23

TV minimization 4.3/19 11.1/21.5
Proposed 4.8/10.8 8.7/12.2

3.2. Real data

We performed reconstructions on 221×221 images from den-
tal data produced by the Focus intraoral X-ray source and the
Sigma intraoral sensor (Instrumentarium Dental; courtesy of
Maaria Rantala, from PaloDex, see [5] for more details). We
have available 23 projections, uniformly distributed over ap-
proximately the full 180◦ of a section of the third molar tooth.
A typical section has four basic components: surrounding air,
a layer of enamel, interior dentin, and pulp (the two dark
holes), see Figure 4. To produce satisfactory results, it was
necessary only H = 100 iterations. To test the effectiveness
of our method, we reconstructed from (i) all the 23 projec-
tions, (ii) 15 (out of the 23) consecutive projections (leaving
then a wedge of uncovered angles), and (iii) 8 (out of the 23)
projections approximately uniformly distributed over the full
180◦. In the first two cases, εwas lowered linearly from 0.005
to 0.001 in 100 iterations, and in the case (iii), from 0.01 to
0.001. Again, we observe from Figure 4 that our approach
delivers reconstructions with less artifacts, without sacrific-
ing the contrast.

4. CONCLUSIONS AND DISCUSSION

In this work, we introduced the framework of learning sparse
representations for density reconstruction in limited angle to-
mography. The reconstruction algorithm aims at minimizing
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Fig. 4. Reconstructions of a section of a tooth from 23 (top
row), 15 (middle row) and 8 (bottom row) projections, using
a FBP method (left column), a total-variation based method
(center column), and our proposed method (right column).

a functional, encouraging a sparse representation of the im-
age patches while keeping the data constraints provided by
the available projections. Preliminary experimental results
from both simulated and real data demonstrated that the pro-
posed reconstruction method outperforms a FBP and a TV-
based method.
As mentioned above, the sparsity-level ε is closely related

to the non-uniform uncertainty level, and it was here left as an
algorithm parameter. Automatically computing this parame-
ter is the subject of important future research.
Results in the image enhancement literature have shown

that significant improvements, leading to state-of-the-art re-
construction, can be achieved by initially considering a dic-
tionary learned from large databases from the same data class
[8, 10], which are then adapted to the particular image. We
plan to continue our line of research in this direction, and re-
sults will be reported elsewhere.
Appendix- A TV-based algorithm: Regarding the implementation
of the TV-based method, we found that a simple alternation between
TV-minimization and imposing the data constraints, produced better
results than solving a constrained TV minimization using, e.g., l1-
magic http://www.acm.caltech.edu/l1magic/. The results by the l1-
magic (using the default parameters and starting with the FBP recon-
struction), were very similar to the starting image. The algorithm for
all the TV reconstructions in this paper consisted of 3,000 to 4,000
iterations of: (i) one step of gradient descent for the TV minimiza-
tion with fixed step size, and (ii) five cycles of ART. In general, the
reconstructions did not improve considerably after 2,000 iterations
and the optimal step size was between 10

−3 and 10
−4.
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